NPP INSTITUTE OF NUCLEAR \& PARTICLE PHYSICS

 The NN System in Three

 The NN System in Three Dimensions

 Dimensions}

Ch. Elster

General Form of NN interaction

- Space (e.g. momenta)
- Basis: vector variables $\quad \vec{p}^{\prime}-\vec{p}, \quad \vec{p}^{\prime}+\vec{p}, \quad \vec{p}{ }^{\prime} \times \vec{p}$
- Spin - Operators

$$
\vec{\sigma}_{1} \text { and } \vec{\sigma}_{2}
$$

- Isospin - Operators
$\vec{\tau}_{1}$ and $\vec{\tau}_{2}$

Idea: form scalar functions with the vector variables handle operators analytically

General Form of NN interaction, cont'd

Allow explicit isospin dependence: $\quad\left\langle t^{\prime} m_{t}^{\prime}\right| V\left|t m_{t}\right\rangle=\delta_{t t^{\prime}} \delta_{m_{t} m_{t}^{\prime}} V^{t m_{t}}$
Spin momentum operator structure invariant under rotation, parity, time-reversal

$$
\begin{aligned}
& w_{1}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=1 \\
& w_{2}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} \\
& w_{3}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=i\left(\boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}\right) \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \\
& w_{4}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=\boldsymbol{\sigma}_{1} \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \boldsymbol{\sigma}_{2} \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \\
& w_{5}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=\boldsymbol{\sigma}_{1} \cdot\left(\mathbf{p}^{\prime}+\mathbf{p}\right) \boldsymbol{\sigma}_{2} \cdot\left(\mathbf{p}^{\prime}+\mathbf{p}\right) \\
& w_{6}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)=\boldsymbol{\sigma}_{1} \cdot\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \boldsymbol{\sigma}_{2} \cdot\left(\mathbf{p}^{\prime}-\mathbf{p}\right)
\end{aligned}
$$

Most general expression for any NN potential:

$$
V^{t m_{t}} \equiv \sum_{j=1}^{6} v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)
$$

where $v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right)$ is a scalar function of $\left|\mathrm{p}^{\prime}\right|,|\mathrm{p}|$, and $\mathrm{p}^{\prime} \cdot \mathrm{p}$

Examples:

χ EFT LO potential:

$$
V_{L O}=-\frac{1}{(2 \pi)^{3}} \frac{g_{A}^{2}}{4 F_{\pi}^{2}} \frac{\sigma_{1} \cdot \mathrm{q} \sigma_{2} \cdot \mathrm{q}}{\mathrm{q}^{2}+M_{\pi}^{2}} \tau_{1} \cdot \tau_{2}+\frac{C_{S}}{(2 \pi)^{3}}+\frac{C_{T}}{(2 \pi)^{3}} \sigma_{1} \cdot \sigma_{2},
$$

$$
\mathrm{q}=\mathrm{p}^{\prime}-\mathrm{p}
$$

χ EFT NLO potential:

$$
\begin{align*}
& V_{N L O}=-\frac{1}{(2 \pi)^{3}} \frac{\tau_{1} \cdot \boldsymbol{\tau}_{2}}{384 \pi^{2} F_{\pi}^{4}} L^{\tilde{\Lambda}}(q)\left[4 m_{\pi}^{2}\left(5 g_{A}^{4}-4 g_{A}^{2}-1\right)+\mathrm{q}^{2}\left(23 g_{A}^{4}-10 g_{A}^{2}-1\right)+\frac{48 g_{A}^{4} m_{\pi}^{4}}{4 m_{\pi}^{2}+\mathrm{q}^{2}}\right] \\
&-\frac{1}{(2 \pi)^{3}} \frac{3 g_{A}^{4}}{64 \pi^{2} F_{\pi}^{4}} L^{\tilde{\Lambda}}(q)\left(\sigma_{1} \cdot \mathrm{q} \sigma_{2} \cdot \mathrm{q}-\sigma_{1} \cdot \sigma_{2} \mathrm{q}^{2}\right) \\
&+\frac{C_{1}}{(2 \pi)^{3}} \mathrm{q}^{2}+\frac{C_{2}}{(2 \pi)^{3}} \mathrm{k}^{2}+\left(\frac{C_{3}}{(2 \pi)^{3}} \mathrm{q}^{2}+\frac{C_{4}}{(2 \pi)^{3}} \mathbf{k}^{2}\right) \sigma_{1} \cdot \sigma_{2} \\
&+\frac{C_{5}}{(2 \pi)^{3}} \frac{i}{2}\left(\sigma_{1}+\sigma_{2}\right) \cdot \mathbf{q} \times \mathrm{k}+\frac{C_{6}}{(2 \pi)^{3}} \mathbf{q} \cdot \sigma_{1} \mathrm{q} \cdot \sigma_{2}+\frac{C_{7}}{(2 \pi)^{3}} \mathbf{k} \cdot \sigma_{1} \mathbf{k} \cdot \sigma_{2}, \tag{C2}\\
& \quad \mathbf{k}=\frac{1}{2}\left(\mathbf{p}^{\prime}+\mathbf{p}\right)
\end{align*}
$$

NN t-matrix: $\quad t^{t m_{t}}=V^{t m_{t}}+V^{t m_{t}} G_{0} t^{t_{t}}$

$$
\begin{aligned}
& t^{t m_{t}} \equiv \sum_{j=1}^{6} t_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right) \\
& \qquad V^{t m_{t}} \equiv \sum_{j=1}^{6} v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{j=1}^{6} t_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \mathrm{w}_{j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right)= & \sum_{j=1}^{6} v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \mathrm{w}_{j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \\
& +2 \mu \lim _{\epsilon \rightarrow 0} \sum_{k, j=1}^{6} \int d \mathbf{p}^{\prime \prime} \frac{v_{k}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}\right) \mathrm{w}_{k}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}\right) t_{j}^{t m_{t}}\left(\mathbf{p}^{\prime \prime}, \mathbf{p}\right) \mathrm{w}_{j}\left(\mathbf{p}^{\prime \prime}, \mathbf{p}\right)}{p^{2}+i \epsilon-p^{\prime \prime 2}}
\end{aligned}
$$

Project with w_{k} from the left

 and perform the trace in NN spin space$$
\begin{aligned}
\sum_{j} A_{k j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) t_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right)= & \sum_{j} A_{k j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \\
& +\int d^{3} p^{\prime \prime} \sum_{j j^{\prime}} v_{j}^{t m_{t}}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}\right) G_{0}\left(p^{\prime \prime}\right) t_{j^{\prime}}^{t m_{t}}\left(\mathbf{p}^{\prime \prime}, \mathbf{p}\right) B_{k j j^{\prime}}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right)
\end{aligned}
$$

dtll functions are scalar!

$$
\begin{gathered}
A_{k j}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \equiv \operatorname{Tr}\left(w_{k}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)\right) \\
B_{k j j^{\prime}}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) \equiv \operatorname{Tr}\left(w_{k}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}\right) w_{j^{\prime}}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right)\right)
\end{gathered}
$$

NN t-matrix consists of 6 coupled eqs of scalar functions

Structure of some of the A_{kj} and $\mathrm{B}_{\mathrm{kjj}}$;

$$
\begin{array}{rlr}
A_{26}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) & =4\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2} \\
A_{33}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) & =-8\left(\mathbf{p} \times \mathbf{p}^{\prime}\right)^{2} & \\
A_{56}\left(\mathbf{p}^{\prime}, \mathbf{p}\right) & =4\left(p^{\prime 2}-p^{2}\right)^{2} \\
& \\
B_{261}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left(\mathbf{p}^{\prime}-\mathbf{p}^{\prime \prime}\right)^{2} \\
B_{612}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2} \\
B_{133}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =-8\left(\mathbf{p}^{\prime \prime} \times \mathbf{p}^{\prime}\right) \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime \prime}\right) \\
B_{331}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =-8\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \cdot\left(\mathbf{p}^{\prime \prime} \times \mathbf{p}^{\prime}\right) \\
B_{313}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =-8\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \cdot\left(\mathbf{p} \times \mathbf{p}^{\prime \prime}\right) \\
B_{145}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left\{\left(\mathbf{p} \times \mathbf{p}^{\prime}\right) \cdot \mathbf{p}^{\prime \prime}\right\}^{2} \\
B_{155}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left\{\left(\mathbf{p}^{\prime}+\mathbf{p}^{\prime \prime}\right) \cdot\left(\mathbf{p}^{\prime \prime}+\mathbf{p}\right)\right\}^{2} \\
B_{551}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime \prime}, \mathbf{p}\right) & =4\left\{\left(\mathbf{p}^{\prime}+\mathbf{p}\right) \cdot\left(\mathbf{p}^{\prime}+\mathbf{p}^{\prime \prime}\right)\right\}^{2}
\end{array}
$$

General form of scattering amplitude (Wolfenstein representation)

$$
\begin{aligned}
M= & a+c\left(\sigma^{(1)}+\sigma^{(2)}\right) \hat{N}+m\left(\sigma^{(1)} \hat{N}\right)\left(\sigma^{(2)} \hat{N}\right)+(g+h)\left(\sigma^{(1)} \hat{P}\right)\left(\sigma^{(2)} \hat{P}\right) \\
& +(g-h)\left(\sigma^{(1)} \hat{K}\right)\left(\sigma^{(2)} \hat{K}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \hat{K} \equiv\left(q^{\prime}-q\right) /\left|q^{\prime}-q\right| \\
& \hat{P} \equiv\left(q+q^{\prime}\right) /\left|q+q^{\prime}\right| \\
& \hat{N} \equiv\left(q \times q^{\prime}\right) /\left|q \times q^{\prime}\right| .
\end{aligned}
$$

Solution of our T-matrix equation can be directly mapped to the Wolfenstein amplitudes (initial state needs to be antisymmetrized)

Wolfenstein amplitudes lead directly to observables (see e.g. N. Hoshizaki, Prog. Theor. Phys. 42, 107 (1968))

Wolfenstein Amplitudes:

with

$$
\begin{aligned}
a^{t m_{t}} & =\frac{1}{4} \operatorname{Tr}(M) \\
c^{t m_{t}} & =-i \frac{1}{8} \operatorname{Tr}\left(M \frac{w_{3}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)}{\left|\mathbf{p} \times \mathbf{p}^{\prime}\right|}\right) \\
m^{t m_{t}} & =\frac{1}{4} \operatorname{Tr}\left(M \frac{w_{4}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)}{\left|\mathbf{p} \times \mathbf{p}^{\prime}\right|^{2}}\right) \\
(g+h)^{t m_{t}} & =\frac{1}{4} \operatorname{Tr}\left(M \frac{w_{5}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)}{\left(\mathbf{p}+\mathbf{p}^{\prime}\right)^{2}}\right) \\
(g-h)^{t m_{t}} & =\frac{1}{4} \operatorname{Tr}\left(M \frac{w_{6}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)}{\left(\mathbf{p}-\mathbf{p}^{\prime}\right)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
M_{m_{1}^{\prime} m_{2}^{\prime}, m_{1} m_{2}}^{t m_{t}} & =-\frac{m}{2}(2 \pi)^{2} \sum_{j=1}^{6}\left[t_{j}^{t_{j} t}\left(\mathbf{p}^{\prime}, \mathbf{p}\right)\left\langle m_{1}^{\prime} m_{2}^{\prime}\right| w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}, \mathbf{p}\right)\left|m_{1} m_{2}\right\rangle\right. \\
& +(-)^{\left.t_{j}^{t m_{t}}\left(\mathbf{p}^{\prime},-\mathbf{p}\right)\left\langle m_{1}^{\prime} m_{2}^{\prime}\right| w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime},-\mathbf{p}\right)\left|m_{2} m_{1}\right\rangle\right]}
\end{aligned}
$$

np scattering at 300 MeV - Bonn B

np scattering at 300 MeV - Bonn B

Spin averaged differential cross section:

$$
\begin{aligned}
& I_{0}=\frac{1}{4} \\
& E_{\text {lab }}=300 \mathrm{MeV} \\
& \Theta_{\text {c.m. }} \text { [deg] }
\end{aligned}
$$

Bonn-B

Deuteron: $t=0, s=1$

$$
\begin{aligned}
\left\langle\mathbf{p} \mid \Psi_{m_{d}}\right\rangle & =\left[\phi_{1}(p)+\left(\sigma_{1} \cdot \mathbf{p} \sigma_{2} \cdot \mathbf{p}-\frac{1}{3} p^{2}\right) \phi_{2}(p)\right]\left|1 m_{d}\right\rangle \\
& \equiv \sum_{k=1}^{2} \phi_{k}(p) b_{k}\left(\sigma_{1}, \sigma_{2}, \mathbf{p}\right)\left|1 m_{d}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\text { Standard s-wave } & \psi_{0}(p)=\phi_{1}(p), \\
\text { d-wave } & \psi_{2}(p)=\frac{4 p^{2}}{3 \sqrt{2}} \phi_{2}(p) .
\end{aligned}
$$

Schrödinger equation: $\quad \Psi_{m_{d}}=G_{0} V^{00} \Psi_{m_{d}}$.

$$
\begin{aligned}
{\left[\phi_{1}(p)+\right.} & \left.\left(\sigma_{1} \cdot \mathbf{p} \sigma_{2} \cdot \mathbf{p}-\frac{1}{3} p^{2}\right) \phi_{2}(p)\right]\left|1 m_{d}\right\rangle= \\
& \frac{1}{E_{d}-\frac{p^{2}}{m}} \int d^{3} p^{\prime} \sum_{j=1}^{6} v_{j}^{00}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}, \mathbf{p}^{\prime}\right) \\
\times & {\left[\phi_{1}\left(p^{\prime}\right)+\left(\sigma_{1} \cdot \mathbf{p}^{\prime} \sigma_{2} \cdot \mathbf{p}^{\prime}-\frac{1}{3} p^{\prime 2}\right) \phi_{2}\left(p^{\prime}\right)\right]\left|1 m_{d}\right\rangle, }
\end{aligned}
$$

Project from left with $\left\langle 1 m_{d}\right| b_{k}\left(\sigma_{1}, \sigma_{2}, \mathbf{p}\right)$ and sum over \mathbf{m}_{d}

$$
\begin{aligned}
& \sum_{m_{d}=-1}^{1}\left\langle 1 m_{d}\right| b_{k}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}\right) \sum_{k^{\prime}=1}^{2} \phi_{k^{\prime}}(p) b_{k^{\prime}}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}\right)\left|1 m_{d}\right\rangle= \\
& \frac{1}{E_{d}-\frac{p^{2}}{m}} \sum_{m_{d}=-1}^{1} \int d^{3} p^{\prime} \sum_{j=1}^{6} v_{j}^{00}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}, \mathbf{p}^{\prime}\right) \sum_{k^{\prime \prime}=1}^{2} \phi_{k^{\prime \prime}}\left(p^{\prime}\right) b_{k^{\prime \prime}}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}\right)\left|1 m_{d}\right\rangle
\end{aligned}
$$

With scalar functions:

$$
\begin{gathered}
A_{k k^{\prime}}^{d}(p) \equiv \sum^{1}\left\langle 1 m_{d}\right| b_{k}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}\right) b_{k^{\prime}}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}\right)\left|1 m_{d}\right\rangle \\
B_{k j k^{\prime \prime}}^{d}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \equiv \sum_{m_{d}=-1}^{1}\left\langle 1 m_{d}\right| b_{k}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}\right) w_{j}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}, \mathbf{p}^{\prime}\right) b_{k^{\prime \prime}}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \mathbf{p}^{\prime}\right)\left|1 m_{d}\right\rangle
\end{gathered}
$$

Deuteron: coupled eq. of 2 scalar functions:

$$
\sum_{k^{\prime}=1}^{2} A_{k k^{\prime}}^{d}(p) \phi_{k^{\prime}}(p)=\frac{1}{E_{d}-\frac{p^{2}}{m}} \int d^{3} p^{\prime} \sum_{j=1}^{6} v_{j}^{00}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \sum_{k^{\prime \prime}=1}^{2} B_{k j k^{\prime \prime}}^{d}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \phi_{k^{\prime \prime}}\left(p^{\prime}\right)
$$

Example: S- and D-wave of chiral NNLO potential.

Published in Phys.Rev.C81, 034006, 2010

The Two-Nucleon System in Three Dimensions.
J. Golak, (Jagiellonian U.) , W. Glockle, (Ruhr U., Bochum) , R. Skibinski, H. Witala, D. Rozpedzik, K. Topolnicki, (Jagiellonian U.) , I. Fachruddin, (Indonesia U.) , Ch. Elster, (Ohio U.) , A. Nogga, (Julich, Forschungszentrum)

Summary

- Realize the most general operator form of
- NN potential
- deuteron wave function
- NN t-matrix
- and derive coupled equations of scalar functions (of vector variables)
- Deuteron: 2 equations
- NN t-matrix: 6 equations
- Spin-momentum operators are algebraically treated by taking traces

Future: $\quad{ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$:

$$
\begin{aligned}
\psi_{t T}(\boldsymbol{p}, \boldsymbol{q}) & =\sum_{t}^{8} \phi_{t T}^{(i)}(\boldsymbol{p}, \boldsymbol{q}) O_{i}\left|\chi^{m}\right\rangle \\
\left|\chi^{m}\right\rangle & \left.=\left|\left(0 \frac{1}{2}\right) \frac{1}{2} \frac{1}{}\right\rangle\right\rangle
\end{aligned}
$$

Fachruddin, Glöckle, Elster, Nogga PRC 69, 064002 (2004)
$O_{1}=1$
$O_{2}=\boldsymbol{\sigma}(23) \cdot \boldsymbol{\sigma}_{(1)}$
$O_{3}=\sigma_{(1)} \cdot(\hat{p} \times \hat{q})$
$O_{4}=\boldsymbol{\sigma}(23) \cdot \hat{p} \times \hat{q}$
$O_{5}=\boldsymbol{\sigma}(23) \cdot \hat{q} \boldsymbol{\sigma}_{(1)} \cdot \hat{p}$
$O_{6}=\boldsymbol{\sigma}(23) \cdot \hat{p} \boldsymbol{\sigma}_{(1)} \cdot \hat{q}$
$O_{7}=\boldsymbol{\sigma}(23) \cdot \hat{p} \boldsymbol{\sigma}_{(1)} \cdot \hat{p}$
$O_{8}=\boldsymbol{\sigma}(23) \cdot \hat{q} \boldsymbol{\sigma}_{(1)} \cdot \hat{q}$.
Isospin states: $\left|\left(0 \frac{1}{2}\right) \frac{1}{2}\right\rangle,\left|\left(1 \frac{1}{2}\right) \frac{1}{2}\right\rangle,\left|\left(1 \frac{1}{2}\right) \frac{3}{2}\right\rangle$

